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Abstract
The Computer-Aided Diagnosis for Breast Ultrasound Imagery (CADBUSI) dataset comprises 63,769
breast ultrasound exams from 45,284 patients collected between 2002 and 2025 at Mayo Clinic Health
System, specifically curated to advance machine learning applications in breast cancer diagnosis. This
comprehensive collection includes 440,966 breast ultrasound images and 81,362 videos with BI-RADS®
assessments and pathology-verified diagnoses, providing ground truth labels for 55,291 unique breasts
(47,942 benign, 7,349 malignant). Our rigorous processing pipeline ensures clinical relevance while stan-
dardizing the dataset for research use. This includes extracting text from images with a custom Faster
R-CNN model, automatically detecting relevant image regions, removing measurement calipers through
our Noise2Noise inpainting approach, and applying HIPAA-compliant anonymization techniques through-
out. By addressing challenges in ultrasound image standardization and linking radiological findings with
pathological outcomes, this dataset enables the development of computer-aided diagnostic tools with
potential to improve breast cancer detection accuracy, reduce unnecessary biopsies, and enhance clinical
decision-making in breast imaging. Our code is available at https://github.com/Poofy1/CADBUSI-
Database.

1 Statistics of the dataset
The Computer-Aided Diagnosis for Breast Ultrasound Imagery (CADBUSI) dataset consists of 63,769 breast
ultrasound exams from 45,284 patients collected between 2002 and 2025 at Mayo Clinic Health System.
Following rigorous data processing and quality control measures detailed in Section 2 and Section 4, this
includes a total of 440,966 breast ultrasound images and 81,362 breast ultrasound videos. The focus of this
dataset is exclusively on breast ultrasound imagery, excluding other modalities or anatomical regions. Each
exam contains pixel data from one or both breasts. The data was originally stored using the Digital Imaging
and Communications in Medicine (DICOM) Standard [6]. Each exam went through a criterion check found
in Section 2 and data cleaning found in Section 4. All data is fully anonymized in the resulting dataset, as
described in Section 3. The number of images per ultrasound exam ranges from 1 to 249, with an average
of 7.40, as shown in Figure 1 (a). Similarly, the number of videos per exam ranges from 1 to 48, with an
average of 2.28, as displayed in Figure 1 (b). Patient ages range from 12 to 101 years with a mean age of
55.59. The average image size is approximately 531 × 808 pixels. The average video size is approximately
552 × 827 pixels, with an average of 180.18 frames for each video (before subsampling in Section 5). There
are 28,259 left breast exams, 27,032 right breast exams, and 8,478 bilateral exams. The dataset organization
and statistical presentation follow approaches established in previous breast ultrasound dataset work by
Shamout et al. [8].

The distribution of BI-RADS® (Breast Imaging-Reporting and Data System) [1] risk assessments and mam-
mographic breast densities found in the radiology reports is detailed in Table 4 and Table 1, respectively. The
ultrasound exams were performed using a variety of machines; the distribution of the machine manufacturers
is summarized within Table 3.

To develop and evaluate our models, we partitioned the CADBUSI dataset into training, validation, and test
sets. All ultrasound exams were first grouped by patient identifier, then patients were randomly assigned to
one of the three sets. This patient-based splitting strategy ensures that all exams from a single patient remain
within the same set, preventing potential data leakage between splits. The dataset consists of breast-level
labels, indicating whether or not at least one malignant lesion was found in that breast.
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Fig. 1. Distribution of media per exam in the CADBUSI dataset. (a) Number of images per exam. (b) Number of videos per
exam.

1.1 Training, validation and test sets
Each patient was randomly assigned to the training set (70% of the patients), validation set (20% of patients),
and test set (10% of patients), ensuring that all exams of a given patient were contained within each set. This
patient-based splitting strategy, following the approach of Shamout et al. [8], prevents data leakage from
patients with multiple exams by keeping all their data within the same subset. Since each breast ultrasound
study contains multiple images (average 7.40 per exam), the breast-level splits result in 283,821 training
images, 79,795 validation images, and 40,794 test images.

Table 1: Distribution of mammographic breast density categories across dataset splits at the breast level.

Mammographic breast density Overall Training set Validation set Test set
A (breasts are almost entirely fatty) 1,988 (3.1%) 1,414 (3.2%) 405 (3.2%) 169 (2.6%)
B (scattered areas of fibroglandular density) 17,120 (26.8%) 11,991 (26.8%) 3,438 (27.1%) 1,691 (26.4%)
C (breasts are heterogeneously dense) 21,205 (33.3%) 14,793 (33.1%) 4,243 (33.5%) 2,169 (33.8%)
D (the breasts are extremely dense) 3,983 (6.2%) 2,823 (6.3%) 777 (6.1%) 383 (6.0%)
Unknown density 19,473 (30.5%) 13,648 (30.6%) 3,820 (30.1%) 2,005 (31.2%)

Table 2: Number of malignant and benign labels across the left and right breasts in the training, validation,
and test sets at the breast ultrasound level.

malignant benign
right left right left

training 2,517 2,558 16,413 17,199
validation 734 770 4,612 4,925
test 388 382 2,368 2,425
overall 3,639 3,710 23,393 24,549
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Fig. 2. Visualization of our dataset’s cropping procedure applied to images with varying width-to-height proportions. The
figure displays three representative examples: (a) an image with an aspect ratio close to the dataset’s average, (b) an image
with the lowest aspect ratio found in our dataset, and (c) an image with the maximum aspect ratio value present in the dataset.

Table 3: Distribution of ultrasound devices across the training, validation, and test sets at the image level.

Device Training set Validation set Test set
LOGIQE9 139,748 39,276 19,518
EPIQ 5G 51,534 14,199 8,076
LOGIQE10 46,310 13,065 6,974
EPIQ 7G 26,043 7,694 3,301
iU22 8,733 2,229 1,340
EPIQ Elite 7,714 2,130 1,021
S2000 1,883 646 286
Antares 863 198 107
TUS A500 836 300 119
HDI 5000 80 29 51
TUS AI800 35 0 0
RS85 17 1 0
Sequoia 8 25 0
SEQUOIA 8 3 1
XarioXG 5 0 0
S3000 4 0 0
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Table 4: Distribution of BI-RADS risk assessment categories across dataset splits at the breast level.

BI-RADS risk assessment Overall Training set Validation set Test set
1 11,431 (17.9%) 7,958 (17.8%) 2,319 (18.3%) 1,154 (18.0%)
2 27,255 (42.7%) 19,177 (42.9%) 5,390 (42.5%) 2,688 (41.9%)
3 9,068 (14.2%) 6,433 (14.4%) 1,728 (13.6%) 907 (14.1%)
4 9,670 (15.2%) 6,748 (15.1%) 1,956 (15.4%) 966 (15.1%)
4A 1,425 (2.2%) 990 (2.2%) 287 (2.3%) 148 (2.3%)
4B 129 (0.2%) 90 (0.2%) 26 (0.2%) 13 (0.2%)
4C 285 (0.4%) 192 (0.4%) 63 (0.5%) 30 (0.5%)
5 953 (1.5%) 635 (1.4%) 210 (1.7%) 108 (1.7%)
6 3,553 (5.6%) 2,446 (5.5%) 704 (5.6%) 403 (6.3%)

1.2 Data labels
The dataset contains a total of 55,291 unique breasts, 47,942 (86.71%) labeled as benign and 7,349 (13.29%)
labeled as malignant. This binary classification approach aligns with clinical decision-making frameworks
where the primary diagnostic question is whether malignancy is present or absent within a given breast.

Each breast ultrasound study receives either a benign or malignant label based on comprehensive clinical
evidence. A malignant label indicates that at least one malignant lesion was identified within the breast,
while a benign label signifies the absence of malignant findings. These labels serve as ground truth derived
from pathology verification and radiological follow-up protocols, as described in Section 2.4.

Labels are assigned on a per-breast basis for each exam, meaning bilateral ultrasound exams contribute two
separate labeled instances (one for each breast). The distribution shows malignant findings in 3,639 right
breasts and 3,710 left breasts, as shown in Table 2.

Figure 3 illustrates the distribution of days between the most recent ultrasound exam prior to biopsy and
the biopsy procedure itself, with 95.98% of biopsies occurring within 30 days of the preceding ultrasound
exam.

Fig. 3. Distribution of days between breast exams and corresponding biopsy
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2 Data collection and preprocessing
Our dataset creation followed a structured pipeline to transform clinical data into a machine learning-ready
resource with verified diagnostic labels. Starting with a query of Mayo Clinic’s medical imaging database, we
developed algorithms to extract and standardize information from unstructured radiology and pathology re-
ports. We addressed challenges in correlating imaging findings with tissue sampling results and implemented
a multi-criteria approach for ground truth verification. This process distilled an initial pool of 104,453 exams
into 60,179 benign and 9,184 malignant cases with high-confidence labels.

2.1 Breast ultrasound query
The initial data collection phase involved querying the Mayo Clinic Health System internal medical imaging
database using Google BigQuery. Our database query began by identifying potential cases using procedure
codes associated with breast imaging. We then refined results to exclude males and include only patients
who had undergone at least one ultrasound breast exam. Our query retrieved all breast-imaging studies for
these qualifying patients, regardless of modality, to establish a complete history of breast imaging. The query
retrieved comprehensive study information including accession numbers, procedure descriptions, modality
details, full radiology reports, and exam timestamps. We also captured demographic data such as patient
age at the time of exam, ethnicity, race, and zip code.

This data collection process involved querying two primary datasets: radiology and pathology. The radiology
dataset served as our master query for patient identification because it contains studies of all breast-imaging
exams, regardless of whether pathology was subsequently performed. The initial data collection spanned
from 1992 to 2025, yielding 1,256,408 radiology studies from 92,971 patients. Of these patients, 26,055
(28.02%) had at least one pathology report, totaling 656,669 pathology reports.

The initial raw data obtained from the database query often consisted of unstructured data within the
radiology and pathology reports. This required parsing to extract relevant information and organize the
findings into a normalized format, as detailed in the following sections.

2.2 Radiology Parsing
Our radiology parsing system was designed to extract structured information from the highly variable free-
text reports generated during breast imaging exams. We developed a parsing system to extract three primary
data elements from each report: BI-RADS assessment categories, breast laterality (left, right, or bilateral),
and imaging modality. Additionally, we captured supplementary information including breast density clas-
sification, documentation of biopsies (including specific detection of ultrasound-guided procedures), and the
complete impression and pathology sections when available within the radiology report.

To address the considerable variability in reporting styles across radiologists and time periods, we imple-
mented a set of regular expression patterns to locate common terms and identifiers. For BI-RADS classifi-
cation alone, our system includes nine distinct complex regex patterns to recognize diverse documentation
formats such as “BI-RADS ASSESSMENT: CODE: 4B-SUSPICIOUS”, “US BIRADS: 2 benign”, and “BI-
RADS® Category: 5 - HIGHLY SUSPICIOUS” among many others. Our extraction algorithm searches
across multiple report fields (DESCRIPTION, TEST_DESCRIPTION, RADIOLOGY_REPORT, RADI-
OLOGY_NARRATIVE) using a fallback strategy when information isn’t found in primary fields, maximiz-
ing data capture. Figure 4 illustrates this extraction process with examples of both successful parsing (a)
and a case requiring fallback strategy implementation where laterality and other fields were not successfully
extracted from primary fields (b).

The laterality determination algorithm includes keyword detection for standard terms (“RIGHT”, “LEFT”,
“BILATERAL”) as well as abbreviated forms (“RT”, “LT”) with specific pattern matching for contextual
awareness (e.g., distinguishing “L BI” from “LT” with trailing space). To enhance extraction accuracy, we
incorporated contextual analysis to prevent misclassification when these keywords appeared in unrelated
sections of the report.

The parsing process also served as a quality control step, allowing us to apply additional filtering criteria
to the dataset. We excluded 128,430 radiology studies (10.22% of the initial dataset) that were recorded
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as having been performed outside the Mayo Clinic system to maintain consistency in reporting standards.
Studies with incomplete BI-RADS assessments (category 0) were removed from the dataset, representing
80,013 studies (6.37% of the initial studies). We also enforced our ultrasound modality inclusion criterion
at this stage, removing 10,113 patients representing 814,016 studies (64.79%) who did not have at least
one ultrasound exam after all filtering steps. This parsing and filtering process yielded 233,949 high-quality
studies for subsequent analysis.

Fig. 4. Breast imaging report parsing and data extraction examples. (a) Successful parsing of a left breast ultrasound report
with BI-RADS 2 (benign) assessment. (b) Parsing challenges shown where laterality is missed in the DESCRIPTION field but
recovered from the RADIOLOGY REPORT as BILATERAL, while DENSITY and IMPRESSION fields fail to parse due to
capitalization issues interrupting the extraction process.

2.3 Pathology parsing
The primary objective of our pathology parsing system was to extract structured diagnostic information
from free-text pathology reports and standardize findings on a per-lesion basis. This separate parsing system
aimed to identify key diagnostic sections within each pathology report, including laterality and whether the
specimen was benign or malignant.

For the laterality determination, we implemented a multi-layered approach that searched across three fields
(final_diag, PART_DESCRIPTION, and SPECIMEN_NOTE) with a fallback strategy when information
wasn’t found in primary fields. The algorithm analyzed each part separately in multi-part reports, tracking
mentions of “RIGHT” and “LEFT” to make accurate laterality assignments and avoid misclassification when
laterality terms appeared in unrelated contexts.

For diagnostic classification, we implemented a three-tier hierarchy of pattern matching rules:

1. First checking for malignant patterns using nine distinct regex expressions (e.g., “INVASIVE DUCTAL
CARCINOMA”, “DCIS”, “CARCINOMA”)

2. Examining the surrounding context (50 characters before matched terms) to identify negated findings
(e.g., “NEGATIVE FOR”, “NO EVIDENCE OF”) that would override an initial malignant classifica-
tion

3. Applying a comprehensive set of over 25 benign classification patterns (e.g., “FIBROADENOMA”,
“NORMAL BREAST TISSUE”, “FIBROCYSTIC”)
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A key challenge was handling reports describing multiple specimens or “parts” within a single document. We
implemented a splitting function that identified lettered divisions (e.g., “A.”, “B.”) within the diagnostic text
and created separate entries for each part, preserving the relationship to the original report. This specimen-
level splitting approach was crucial because some of our data was already organized at the specimen level,
while other pathology reports contained multiple specimens per entry - requiring consistent granularity across
the dataset. This processing step expanded our initial collection of 656,669 pathology reports to 2,233,473
discrete specimens.

This multi-step classification approach resulted in our final specimen label distribution being 1,341,238 benign
(60.05%), 770,589 malignant (34.50%), 121,646 unknown (5.45%). Our laterality determination analysis iden-
tified 1,112,806 left specimens (49.82%), 1,117,397 right specimens (50.03%), and 3,270 unknown laterality
(0.15%). The distributions of diagnostic categories and specimen laterality are visualized in Figure 5.

Fig. 5. Pathology data characteristics in the CADBUSI dataset. (a) Distribution of pathology diagnoses showing benign, ma-
lignant, and unknown categories with their respective percentages. (b) Distribution of breast laterality in pathology specimens.

2.4 Label generation
Having parsed both radiology and pathology reports, we then developed algorithms to generate ground truth
labels for each breast examination. This process aims to provide a ground truth label (benign or malignant)
for each breast ultrasound study by systematically evaluating both the extracted radiology findings and the
corresponding pathology results. We implement four different algorithms to determine these ground truth
labels, with the complete filtering protocol illustrated in Figure 6.

Low-Risk Studies Without Biopsy
For Negative BI-RADS (BI-RADS 1-2) breasts without biopsies, we apply stringent follow-up criteria. These
breasts are labeled benign only when no biopsy is performed within a window of 30 days before to 120 days
after the ultrasound exam, no non-benign BI-RADS assessments (BI-RADS 4, 4A, 4B, 4C, 5, or 6) appear
in the 24-month follow-up period, no malignant pathology is reported within 15 months after the ultrasound,
and at least 6 months of follow-up data are available. This approach identifies 41,071 (39.32%) benign
breasts.

BI-RADS 3 Studies
For BI-RADS 3 breasts (probably benign), we apply an extended follow-up protocol. Breasts are labeled
benign when no biopsy is performed within the -30 to +120 day window, and all subsequent ultrasounds
within 36 months have either only BI-RADS assessments of null, 1, or 2, or only assessments of null, 1, 2,
or 3 with at least one exam at 24+ months. Additionally, no malignant pathology can be found within 15
months, and a minimum follow-up period of 6 months is required. This protocol identifies an additional
8,860 (8.48%) benign breasts.
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BI-RADS 6 Studies
Studies with BI-RADS 6 assessment (known malignancy) are labeled malignant when the patient has at
least one confirmed malignant pathology in their record, resulting in 4,039 (3.87%) malignant breasts.

Pathology-Confirmed Studies
For remaining ultrasound studies, we examine pathology reports within an 8-month window. For potential
malignant breasts (BI-RADS 4, 4A, 4B, 4C, 5, or 6), we label them malignant if laterality matches between
ultrasound and pathology, and at least one ultrasound-guided biopsy is performed. For potential benign
breasts (BI-RADS 1, 2, 3, 4, 4A, or 4B), we label them benign if laterality matches and pathology confirms
benign findings with no malignant findings. This approach identifies 5,145 (4.93%) malignant breasts and
10,248 (9.81%) benign breasts.

This multi-step classification approach, following rigorous labeling principles established by Shamout et
al. [8], results in a final label distribution of 60,179 (57.61%) benign breasts and 9,184 (8.79%) malignant
breasts, with 35,090 (33.59%) remaining unlabeled as they did not meet the inclusion criteria of any of the
four classification algorithms. These unlabeled breasts were not included in the final database.

Fig. 6. Filtering protocol for non-biopsied patients whose ultrasound exams had BI-RADS risk assessment 1-2 (a), BI-RADS
risk assessment 3 (b), patients with a pathology report (c), and patients with biopsy-proven cancer (d). Inspired by Shamout
et al. [8].

3 Anonymization
To protect patient privacy and comply with data protection regulations including HIPAA (Health Insurance
Portability and Accountability Act) and institutional IRB requirements, all DICOM files in the dataset
undergo a thorough anonymization process. This procedure carefully removes or modifies sensitive patient
information while preserving the clinical utility of the images for research.

The process begins by identifying and removing direct patient identifiers within the DICOM files. This
includes information such as patient names, referring physician details, institution names, and unique study
codes that could potentially link an image back to an individual.

Additionally, dates are standardized to include only the year (removing month and day), and scan times are
removed to eliminate exact temporal identifiers while preserving study sequence.

To ensure internal data provenance, original patient and study identifiers are replaced with format-preserving
encryption using the NIST SP 800-38G FF1 algorithm with a 128-bit key [2]. The FF1 (Format-preserving,
Feistel-based encryption) algorithm is a mode of operation for block ciphers that encrypts data while pre-
serving its original format and length. For example, a 10-digit patient ID remains a 10-digit number after
encryption, and alphanumeric identifiers maintain their character composition. This approach maintains
the format and length of the original identifiers while providing HIPAA-compliant protection that preserves
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referential integrity across the dataset. The encryption keys are secured via Mayo Clinic’s data protection
infrastructure with access restricted to authorized research personnel.

The final step addresses burned-in identifiers - patient information physically embedded in the pixel data.
Our approach leverages DICOM metadata already present in ultrasound files, specifically the ‘RegionLoca-
tionMinY0’ parameter from the SequenceOfUltrasoundRegions tag (0018,6011), which defines the vertical
starting position of the clinically relevant ultrasound image. For cases where this parameter is available,
we use its exact value; otherwise, we default to a conservative threshold (y0=101) based on analysis of our
dataset. This boundary is used to replace all pixel data above this line with black pixels (zero values),
effectively removing the header region where identifying information appears while preserving the complete
diagnostic content, as demonstrated in Figure 7. This process handles both single-frame images and multi-
frame ultrasound video sequences, with special consideration for compressed DICOM formats that require
decompression before pixel manipulation.

To validate the effectiveness of this approach, we manually reviewed over 10% of the processed images
(804,582) and confirmed complete removal of identifying information with no cases of under-cropping or
removal of diagnostically relevant image data. We have no evidence to suggest that the anonymization
process introduced any image bias that could affect the training of models designed to differentiate between
benign and malignant lesions.

Fig. 7. Demonstration of the DICOM anonymization process for ultrasound images. (a) Raw ultrasound image with patient
identifiers visible in the header region (highlighted in red). These identifiers include patient name, ID, and exam information
that could potentially link the image to a specific individual. (b) Processed image after our automated anonymization algorithm
identifies and removes all patient-identifying information by replacing the header region with black pixels while preserving the
complete diagnostic content of the ultrasound image.

4 Image processing
Following the medical data filtering and label generation process described in Section 2, we obtained 664,015
breast ultrasound images and 105,420 videos from 69,363 exams. To prepare these raw ultrasound images
for machine learning applications, we applied a comprehensive image processing pipeline that refined the
dataset to 440,966 images and 81,362 videos. This pipeline included optical character recognition (OCR) for
metadata extraction, automated cropping to isolate diagnostic regions, detection of image pairs, detection
of measurement calipers, inpainting to remove potential data leakage sources, and quality filtering to locate
poorly taken ultrasound images. To the best of our knowledge, no bias affecting the differentiation of benign
or malignant lesions was introduced during these processes, as equal treatment was applied to all images
regardless of their pathology.
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4.1 Text extraction and OCR
Ultrasound images commonly contain vital diagnostic metadata embedded as text within annotation regions.
To systematically extract this information, we developed a two-phase approach beginning with precise local-
ization of text-containing regions.

This localization is required because text regions vary in position across different ultrasound images. We
implemented a Faster R-CNN model [7] with a SqueezeNet1.1 backbone [4], trained on 1,100 manually anno-
tated ultrasound images from diverse equipment vendors. The model identifies two distinct text-containing
region classes that hold critical clinical information such as laterality, orientation, clock position, and distance
measurements.

The detection model was configured with multiple anchor scales (32-512 pixels) and aspect ratios to accom-
modate varying text region dimensions across different ultrasound machines. Evaluation on a test set of 100
ultrasound images demonstrated a precision of 0.83, recall of 0.88, and an F1-score of 0.86. The resulting
bounding boxes are used to crop relevant text regions from the original images before proceeding to OCR,
significantly improving character recognition by isolating text-dense areas and reducing noise. In cases where
the detection model failed to identify text regions, we applied a fallback strategy that automatically cropped
the lower third of the image—a region commonly containing descriptive text in ultrasound images. Figure 8
illustrates both our primary text detection approach and the fallback strategy.

For the OCR phase, we implemented a pipeline using EasyOCR [5] to extract text from the cropped regions.
Each region was preprocessed with light Gaussian blurring (3×3 kernel) to reduce noise while preserving
text clarity. To improve detection quality, we expanded the bounding boxes by 2.5% in each direction to
ensure complete capture of text that might intersect with region boundaries. The extracted text underwent
post-processing to correct common OCR errors, particularly equipment manufacturer names (e.g., correcting
“loc” to “logiq”) and standardizing case for consistent downstream parsing.

Fig. 8. Text extraction process in ultrasound images. (a) Primary approach using Faster R-CNN detection: 𝑎1 shows the
detected text region containing key metadata, 𝑎2 describes the extracted text from EasyOCR, and 𝑎3 shows the corrected
diagnostic information, fixing the error from ‘scm fn’ to’5cm fn’. (b) Fallback strategy when detection fails, automatically
cropping the bottom third of the image (highlighted in red) where descriptive text commonly appears in ultrasound images.

4.2 Cropping
Ultrasound images typically contain diagnostic information embedded within a visually distinct scan region
surrounded by peripheral elements such as instrumentation overlays and borders. Our system automatically
isolates this primary diagnostic region through a multi-step process (as shown in Figure 10).

First, we detect and mask text elements in the lower third of the image using our OCR pipeline, preventing
them from interfering with boundary detection. The algorithm then applies threshold-based binarization
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to create a mask highlighting the high-contrast ultrasound region. To reduce noise and small artifacts,
we perform morphological erosion using a cross-shaped structuring element (5 iterations), which effectively
removes small bright regions while preserving the main ultrasound boundary.

After erosion, we detect contours in the processed image and identify the largest one as the primary ultrasound
region. For consistent cropping, we compute the convex hull of this contour and employ a specialized function
to identify top edge points within a 20-pixel vertical range from the highest y-coordinate. This approach
accommodates the irregular curved upper boundaries commonly found in sector/fan-shaped ultrasound scans
while providing stable detection of the rectangular bounds.

The final crop coordinates are determined by the leftmost and rightmost points along the top edge, with the
height extending to the lowest point of the convex hull. This methodology provides reliable separation of
the diagnostically relevant ultrasound data from surrounding artifacts across diverse equipment vendors and
scan types (as shown in Figure 9). Our approach builds upon techniques described by Shamout et al. [8] for
handling various ultrasound image shapes and removing surrounding margins in breast ultrasound datasets.

Fig. 9. Common ultrasound imaging geometries: (a) Rectangular, (b) Trapezoidal, and (c) Sector/Curvilinear. Red dots mark
key boundary points (x_min, x_max, y_min) that our cropping algorithm detects, with dotted lines showing the resulting
rectangular bounding boxes. Methodology adapted from Shamout et al. [8].

Fig. 10. Image processing pipeline for bus display text extraction: (a) original image, (b) text detection, (c) binary mask
with black bar on text, (d) eroded mask with largest contour identification, (e) convex hull with top edge points detection, and
(f) final result with extracted region. The pipeline is demonstrated on two different bus images. Methodology adapted from
Shamout et al. [8].

4.3 Measurement caliper detection
Measurement calipers are often placed on ultrasound images by sonographers to indicate lesion size. These
calipers could potentially create data leakage, as they might inadvertently provide the model with measure-
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ment information that correlates with diagnostic outcomes, rather than forcing the model to learn from the
tissue characteristics visible in the image.

To address this issue, we developed a custom binary classification model based on a modified ResNet-18
architecture [3] adapted for grayscale ultrasound images. The model was trained on 1,100 manually annotated
ultrasound images from diverse equipment vendors, achieving 0.9390 AUC in detecting the presence of
measurement calipers.

Rather than excluding caliper-containing images from our dataset, we retain the original images and incorpo-
rate caliper presence as an explicit feature in our metadata. This identification also enables selective artifact
removal through advanced inpainting techniques described in the following section. We found that 151,568
images (approximately 22.83% of the dataset) contained measurement calipers.

4.4 Finding duplicates
Ultrasound exams frequently contain near-duplicate image pairs, one with measurement calipers and the
other without. Identifying these pairs reduces dataset redundancy and eliminates the need for inpainting
when clean (no image annotations or markings) versions exist. However, due to clinical workflow variations
and human error, many caliper-marked images lack clean duplicates, necessitating inpainting techniques to
recover the underlying tissue structures in these cases.

Our duplicate detection algorithm operates by comparing cropped ultrasound regions across images from
the same patient study. We then compute pixel-wise differences between each candidate image and all other
images from the same patient. A distance metric based on the mean absolute difference between flattened
image arrays identifies the most similar image pairs. When this distance falls below an empirically determined
threshold of 5.00, the images are flagged as near-duplicates.

For each detected pair, we record the relationship in our database. In particular, when one image contains
measurement calipers (as determined in Section 4.3) while its duplicate does not, we can simply use the
clean duplicate rather than applying computationally intensive inpainting techniques.

This approach identified 231,030 pairs of duplicate images in our dataset, with 93,148 of caliper-containing
images having a corresponding clean duplicate, reducing the need for inpainting.

4.5 Inpainting
For ultrasound images where calipers were detected, an inpainting technique based on a Noise2Noise (N2N)
model [9] was applied to remove these artifacts. Through the combined application of our caliper detection
and duplicate identification processes (Section 4.3 and Section 4.4), we identified 151,568 images containing
measurement calipers. Of these, 93,148 images had corresponding clean duplicates available, leaving 58,420
images that required inpainting due to the absence of unmarked alternatives. This N2N model was trained
using a dataset of clean ultrasound images. We first collected and extracted caliper patterns from annotated
images to create a library of binary caliper masks (seen in Figure 11).

Fig. 11. Representative subset of extracted caliper patterns.

During training, these extracted caliper masks were procedurally applied to clean images with random
transformations (scaling 50-150%, rotation ±45°, and affine skewing) to improve model robustness against
variations in caliper appearance. By training the model with noisy input images (clean ultrasound + proce-
dural caliper noise) paired with their corresponding clean targets with its own procedural caliper noise, the
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N2N framework learned to differentiate between inherent anatomical structures and superimposed measure-
ment calipers (See Figure 12). The model’s inability to predict the random placement of procedural noise
forced it to focus on reconstructing the underlying tissue structures, resulting in effective artifact removal
while preserving diagnostically relevant features.

Our training dataset consisted of 25,000 ultrasound image pairs, each containing a clean image and its corre-
sponding version with calipers, from which we extracted 16 unique caliper patterns exhibiting diverse shapes
and orientations. We observed that certain caliper patterns appeared significantly more frequently in clinical
practice than others. By adjusting our procedural caliper placement to reflect these real-world frequency
distributions rather than uniform sampling, we improved model performance on validation data. The dataset
was split into 80% for training and 20% for validation. On our validation set, the model achieved an average
PSNR (Peak Signal-to-Noise Ratio, measuring reconstruction quality) of 28.36 dB and SSIM (Structural Sim-
ilarity Index Measure, assessing perceptual image similarity) of 0.9866. Visual inspection revealed that the
N2N approach produced noticeably cleaner reconstructions compared to traditional inpainting techniques,
with little to no visible artifacts in the processed images.

Fig. 12. Inpainting results demonstrating the Noise2Noise approach: (a) Input ultrasound image with random caliper place-
ment, (b) Target image with random caliper placement, (c) Resulting inpainted image with calipers removed while preserving
tissue structures.

4.6 Signal intensity thresholding
The average “darkness” or pixel intensity distribution within the cropped ultrasound region was calculated.
This quantitative measure enabled identification of suboptimal ultrasound captures, including those with
insufficient penetration depth or poor contrast. While these darker or technically inadequate images could
potentially be retained in the dataset, we opted to exclude them to enhance the signal-to-noise ratio and
improve model training.

Through this filtering process, we identified and excluded 13,216 ultrasound images (1.99% of our dataset)
that exhibited excessive darkness or inadequate tissue visualization. Figure 13 illustrates the darkness
distribution across our dataset, with the quality threshold indicated by a red dashed line and an example of
a rejected ultrasound shown in the inset.
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Fig. 13. This figure shows our ultrasound dataset’s darkness distribution with the quality threshold (red region). Images
exceeding this darkness threshold were excluded to remove inadequate scans with insufficient penetration, optimizing our
Multiple Instance Learning approach by improving signal-to-noise ratio. The inset displays an example of a rejected dark
ultrasound image (mean darkness: 77.39).

5 Video processing
Processing of ultrasound video sequences shares core methodologies with our image processing pipeline while
addressing challenges specific to temporal data. Each video is treated as a sequence of frames, with key
processing parameters determined from the initial frame and applied consistently throughout the sequence
to maintain coherence.

Processing began by extracting all frames from each DICOM video. The first frame of each sequence
underwent our complete detection pipeline to establish parameters for text regions (Section 4.1), cropping
boundaries (Section 4.2), and anonymization (Section 3). These parameters were then consistently applied
to all subsequent frames to maintain spatial coherence throughout the sequence.

Unlike static ultrasound images, we observed that measurement calipers are not placed on video sequences
in clinical practice. This eliminated the need for caliper detection (Section 4.3) and inpainting procedures
(Section 4.5) in our video processing pipeline.

To manage data volume and reduce temporal redundancy, only every fourth frame from each video is ex-
tracted and retained for the final dataset. This frame sampling approach captures the essential visual
information while significantly reducing the overall data size by 75%.

6 Strengths and weaknesses
The methodologies used in creating and processing the breast ultrasound dataset offer significant strengths
for AI development. The dataset provides a large, meticulously labeled resource with pathology-verified
ground truths, comprising a total of 440,966 images and 55,291 unique breast labels. Preprocessing steps
have been implemented to ensure data quality and minimize data leakage, which is crucial for training
reliable AI models. These steps include robust anonymization, automated cropping of diagnostic regions,
and a novel Noise2Noise inpainting technique to remove measurement calipers.

Despite these advantages, certain weaknesses exist. Imperfections in OCR for text extraction (0.86 F1-
score for detection) could lead to metadata errors. While inpainting techniques are advanced (28.36 dB
PSNR), they might introduce subtle artifacts or remove fine details. Furthermore, the stringent criteria for
label generation, though ensuring high confidence, resulted in a large portion of the initial data remaining
unlabeled. Additionally, the final labeled dataset is notably imbalanced, with 86.71% of breasts labeled as
benign and only 13.29% as malignant, which may require class-balancing strategies during model training.
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The image and video processing and data handling techniques detailed are not limited to breast ultrasound.
These methods can be adapted for diagnostic ultrasound of other organ systems like the thyroid, liver, or
kidneys, where similar challenges in standardizing image data and extracting relevant information for AI
analysis are prevalent. This adaptability makes the described framework a blueprint for broader applications
in medical ultrasound imaging.
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